

Fig. 4. The thermal expansion coefficient, α_f , and the compressibility coefficient, β_f , of fluid He³ along the melting curve.

sented by an equation of the type

$$V_f = d' + b'(P_m + a')^{c'}.$$
(4)

A similar equation, with d' = 0, had been used for N₂ measurements (15). The constants of Eq. (4), obtained by a least-squares fit of the experimental data for He⁴ and He³, are given in Table VII together with the range of applicability and rms deviation in V_f . Equation (4) applied to He³ and He⁴ I probably does not fully reflect the accuracy of the measurements but is useful in making interpolations.

9

GRILLY AND MILLS

FIG. 5. Pressure-temperature diagram of $\alpha_f = 0$ for fluid He³.

IV. DISCUSSION

A. DISCUSSION OF He⁴ RESULTS

Values of ΔV_m derived from molar volumes of solid and fluid measured by Dugdale and Simon (3), agree within 2 percent with the present determinations at pressures below 300 kg/cm² and above 2000 kg/cm². At intermediate pressures, however, their values are consistently lower than those reported here. A maximum deviation of -7 percent occurs at 1000 kg/cm².

Below 250 kg/cm² a plot of the present ΔV_m data in Fig. 2 shows a sharp break in the curve at about 32 kg/cm², corresponding to a melting temperature of